FHI
The NOMAD Laboratory

Novel Materials Discovery at the FHI Molecular Physics Department
of the Max Planck Society

Person

Dr. Christian Carbogno

Carbogno

Member since 10/2012
Phone: +49 30 8413 4817
Room: T 1.07
Email: carbogno@fhi.mpg.de

RESEARCH TOPICS

Thermodynamic properties of high-performance ceramics 

METHODS

2024

Articles

  1. S. Bi, C. Carbogno, I. Y. Zhang, M. Scheffler,
    Self-interaction corrected SCAN functional for molecules and solids in the numeric atom-center orbital framework.
    J. Chem. Phys. 160, 034106 (2024), https://doi.org/10.1063/5.0178075
    Download: pdf

  2. J. Quan, C. Carbogno, M. Scheffler,
    Carrier Mobility of Strongly Anharmonic Materials from First Principles
    Accepted for publication in Phys. Rev. B, October 29, 2024, https://doi.org/10.48550/arXiv.2408.12908
    Preprint Download (2024): arXiv

  3. J. Quan, M. Zhang, N. Rybin, M. Zacharias, X. Ren, H. Jiang, M. Scheffler, C. Carbogno
    Temperature-dependent Electronic Spectral Functions from Band-Structure Unfolding.
    Submitted for publication in "Roadmap for Advancement of the FHI-aims Software Package", September 5, 2024;
    https://arxiv.org/pdf/2411.04951 
    Preprint Download (2024): arXiv

  4. K. Kang, T. A. R. Purcell, C. Carbogno, M. Scheffler,
    Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning.
    Submitted for publication September 18, 2024, https://arxiv.org/abs/2409.11808
    Preprint Download (2024): arXiv

  5. S. Kokott, F. Merz, Y. Yao, C. Carbogno, M. Rossi, V. Havu, M. Rampp, M. Scheffler, V. Blum,
    Efficient All-electron Hybrid Density Functionals for Atomistic Simulations Beyond 10,000 Atoms.
    J. Chem. Phys. 161, 024112 (2024), https://doi.org/10.1063/5.0208103 
    Download (2024): pdf

  6. S. Bauer, P. Benner, T. Bereau, V. Blum, M. Boley, C. Carbogno, C. R. A. Catlow, G. Dehm, S. Eibl, R. Ernstorfer, Á. Fekete, L. Foppa, P. Fratzl, C. Freysoldt, B. Gault, L. M. Ghiringhelli, S. K. Giri, A. Gladyshev, P. Goyal, J. Hattrick-Simpers, L. Kabalan, P. Karpov, M. S. Khorrami, C. Koch, S. Kokott, T. Kosch, I. Kowalec, K. Kremer, A. Leitherer, Y. Li, C. H. Liebscher, A. J. Logsdail, Z. Lu, F. Luong, A. Marek, F. Merz, J. R. Mianroodi, J. Neugebauer, T. A. R. Purcell, D. Raabe, M. Rampp, M. Rossi, J.-M. Rost, U. Saalmann, A. Saxena, L. Sbailo, M. Scheffler, M. Scheidgen, M. Schloz, D. F. Schmidt, S. Teshuva, A. Trunschke, Y. Wei, G. Weikum, R. P. Xian, Y. Yao, M. Zhao,
    Roadmap on Data-Centric Materials Science.
    Modelling Simul. Mater. Sci. Eng. 32, 063301; https://doi.org/10.1088/1361-651X/ad4d0d
    Download (2024): pdf

2023

Articles

  1. L. M. Ghiringhelli, C. Baldauf, T. Bereau, S. Brockhauser, C. Carbogno, J. Chamanara, S. Cozzini, S. Curtarolo, C. Draxl, S. Dwaraknath, Á. Fekete, J. Kermode, C. T. Koch, M. Kühbach, A. N. Ladines, P. Lambrix, M.-O. Lenz-Himmer, S. Levchenko, M. Oliveira, A. Michalchuk, R. Miller, B. Onat, P. Pavone, G. Pizzi, B. Regler, G.-M. Rignanese, J. Schaarschmidt, M. Scheidgen, A. Schneidewind, T. Sheveleva, C. Su, D. Usvyat, O. Valsson, C. Wöll, and M. Scheffler,
    Shared Metadata for Data-Centric Materials Science.
    Scientific Data 10, 626 (2023); https://doi.org/10.1038/s41597-023-02501-8
    Download: pdf

  2. H. Lu, G. Koknat, Y. Yao, J. Hao, X. Qin, C. Xiao, R. Song, F. Merz, M. Rampp, S. Kokott, C. Carbogno, T. Li, G. Teeter, M. Scheffler, J. J. Berry, D. B. Mitzi, J. L. Blackburn, V. Blum, and M. C. Beard,
    Electronic Impurity Doping of a 2D Hybrid Lead Iodide Perovskite by Bi and Sn.
    PRX Energy 2, 023010 (2023); http://dx.doi.org/10.1103/PRXEnergy.2.023010  
    Download: pdf

  3. F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
    Anharmonicity in Thermal Insulators – An Analysis from First Principles.
    Phys. Rev. Lett. 130, 236301 (2023); https://doi.org/10.1103/PhysRevLett.130.236301
    Download: pdf

  4. F. Knoop, M. Scheffler, and C. Carbogno,
    Ab initio Green-Kubo simulations of heat transport in solids: method and implementation.
    Phys. Rev. B 107, 224304 (2023); https://doi.org/10.1103/PhysRevB.107.224304
    Download: pdf

  5. M. F. Langer, F. Knoop. C. Carbogno, M. Scheffler, and M. Rupp, 
    Heat flux for semi-local machine-learning potentials.
    Phys. Rev. B (Letter) 108, L100302 (2023); https://doi.org/10.1103/PhysRevB.108.L100302
    Download: pdf

  6. O. T. Beynon, A. Owens, C. Carbogno, and A. J. Logsdail,
    Evaluating the Role of Anharmonic Vibrations in Zeolite β Materials.
    J. Phys. Chem. C 127, 16030 (2023); https://doi.org/10.1021/acs.jpcc.3c02863
    Download: pdf 

  7. S. Lu, L. M. Ghiringhelli, C. Carbogno, J. Wang, M. Scheffler,
    On the Uncertainty Estimates of Equivariant-Neural-Network-Ensembles Interatomic Potentials.
    September 1, 2023; https://doi.org/10.48550/arXiv.2309.00195
    Preprint Download (2023): arXiv

  8. T. A. R. Purcell, M. Scheffler, L. M. Ghiringhelli, C. Carbogno,
    Accelerating Materials-Space Exploration by Mapping Materials Properties via Artificial Intelligence: The Case of the Lattice Thermal Conductivity.
    npj Computational Materials 9 (1), 112 (2023); https://doi.org/10.1038/s41524-023-01063-y
    Download: pdf

2022

Articles

  1. C. Carbogno, K.S. Thygesen, B. Bieniek, C. Draxl, L.M. Ghiringhelli, A. Gulans, O. T. Hofmann, K. W. Jacobsen, S. Lubeck, J. J. Mortensen, M. Strange, E. Wruss, and M. Scheffler,
    Numerical Quality Control for DFT-based Materials Databases.
    npj Computational Materials 8, 69 (2022); https://doi.org/10.1038/s41524-022-00744-4
    Download: pdf

  2. T. A. R. Purcell, M. Scheffler, C. Carbogno, and L.M. Ghiringhelli,
    SISSO++: A C++ Implementation of the Sure-Independence Screening and Sparsifying Operator Approach.
    Journal of Open Source Software 7 (71), 3960 (2022); https://doi.org/10.21105/joss.03960
    Download: pdf

2021

Articles

  1. C. Carbogno and M. Scheffler,
    Identifying novel thermal insulators in material space.
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 42–43 (2021).
    Download: pdf
  2. C. Carbogno, V. Blum, S. Kokott, H. Lederer, A. Marek, F. Merz, M. Rampp, X. Ren and M. Scheffler,
    Preparing electronic-structure theory for the exascale.
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 47–49 (2021).
    Download: pdf
  3. C. Draxl, M. Scheidgen, T. Zastrow, R. Ritz, H. Lederer, S. Heinzel and M. Scheffler,
    The NOMAD Laboratory
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 50–51 (2021).
    Download: pdf
  4. A. Mazheika, S.V. Levchenko, L.M. Ghiringhelli and M. Scheffler,
    Materials for turning greenhouse gases into useful chemicals and fuels: a route identified by high-throughput calculations and artificial intelligence.
    In: High-Performance Computing and Data Science in the Max Planck Society. Max Planck Computing and Data Facility, Garching, 44–46 (2021).
    Download: pdf

2020

Articles

  1. H.-J. Bungartz, C. Carbogno, M. Galgon, T. Huckle, S. Köcher, H.-H. Kowalski, P. Kus, B. Lang, H. Lederer, V. Manin, A. Marek, K. Reuter, M. Rippl, M. Scheffler, and C. Scheurer,
    ELPA: A parallel solver for the generalized eigenvalue problem. In Parallel Computing: Technology Trends (pp. 647-668). Amsterdam: IOS Press. (2020); https//doi.org/10.3233/APC200095
    Preprint download: pdf
  2. G. Cao, R. Ouyang, L.M. Ghiringhelli, M. Scheffler, H. Liu, C. Carbogno, and Z. Zhang,
    Artificial Intelligence for High-Throughput Discovery of Topological Insulators: The Example of Alloyed Tetradymites. Phys. Rev. Mater. 4, 034204 (2020); https://doi.org/10.1103/PhysRevMaterials.4.034204
    Reprint download: pdf, Arxiv
  3. F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
    Anharmonicity Measure for Materials. Phys. Rev. Materials 4, 083809 (2020); https://doi.org/10.1103/PhysRevMaterials.4.083809
    Reprint download: pdf, Arxiv

  4. F. Knoop, T. A. R. Purcell, M. Scheffler, and C. Carbogno,
    FHI-vibes: Ab Initio Vibrational Simulations. J. Open Source Softw. 52, 2601 (2020); https://doi.org/10.21105/joss.02671
    Reprint download: pdf

  5. M. Zacharias, M. Scheffler, and C. Carbogno,
    Fully Anharmonic, Non-Perturbative Theory of Vibronically Renormalized Electronic Band Structures. Phys. Rev. B 102, 045126 (2020); https://doi.org/10.1103/PhysRevB.102.045126
    Reprint download: pdf

2019

Articles

  1. A. Alvermann, A. Basermann, H.-J. Bungartz, C. Carbogno, D. Ernst, H. Fehske, Y. Futamura, M. Galgon, G. Hager, S. Huber, T. Huckle, A. Ida, A. Imakura, M. Kawai, S. Köcher, M. Kreutzer, P. Kus, B. Lang, H. Lederer, V. Manin, A. Marek, K. Nakajima, L. Nemec, K. Reuter, M. Rippl, M. Röhrig-Zöllner, T. Sakurai, M. Scheffler, C. Scheurer, F. Shahzad, D. Simoes Brambila, J. Thies, and G. Wellein,
    Benefits from using mixed precision computations in the ELPA-AEO and ESSEX-II eigensolver projects. Japan J. Indust. Appl. Math. 36, 699-717 (2019); https://doi.org/10.1007/s13160-019-00360-8
    Reprint download: pdf
  2. P. Kůs, A. Marek, S.S. Köcher, H.-H. Kowalski, C. Carbogno, Ch. Scheurer, K. Reuter, M. Scheffler, and H. Lederer.
    Optimizations of the Eigensolvers in the ELPA Library. Parallel Computing 85, 167 (2019); https://doi.org/10.48550/arXiv.1811.01277
    Preprint download: Arxiv
  3. M.-O. Lenz, T. A. R. Purcell, D. Hicks, S. Curtarolo, M. Scheffler, C. Carbogno,
    Parametrically constrained geometry relaxations for high-throughput materials science. npj Computational Materials 5, 123 (2019); https://doi.org/10.1038/s41524-019-0254-4
    Reprint download: pdf

  4. R. Ouyang, E. Ahmetcik, C. Carbogno, M. Scheffler, and L. M. Ghiringhelli,
    Simultaneous Learning of Several Materials Properties from Incomplete Databases with Multi-Task SISSO. J. Phys. Mater. 2, 024002 (2019);  https://doi.org/10.1088/2515-7639/ab077b

  5. H. Shang, A. Argondizzo, S. Tan, J. Zhao, P. Rinke, C. Carbogno, M. Scheffler, and H. Petek,
    Electron-phonon coupling in d-electron solids: A temperature-dependent study of rutile TiO2 by first-principles theory and two-photon photoemission. Phys. Rev. Research 1, 033153 (2019);  https://doi.org/10.1103/PhysRevResearch.1.033153

2018

Articles

  1. K. Rasim, R. Ramlau, A. Leithe-Jasper, T. Mori, U. Burkhardt, H. Borrmann, W. Schnelle, C. Carbogno, M. Scheffler, and Y. Grin,
    Local Atomic Arrangements and Band Structure of Boron Carbide. Angew. Chem. 57, 6130 –6135 (2018);  https://doi.org/10.1002/anie.201800804

  2. H. Shang, N. Raimbault, P. Rinke, M. Scheffler, M. Rossi, and C. Carbogno,
    All-Electron, Real-Space Perturbation Theory for Homogeneous Electric Fields: Theory, Implementation, and Application within DFT. New J. Phys. 20, 073040 (2018);  https://doi.org/10.1088/1367-2630/aace6d

2017

Articles

  1. A. Bhattacharya, C. Carbogno, B. Böhme, M. Baitinger, Y. Grin, and M. Scheffler,
    Formation of Vacancies in Si- and Ge-based Clathrates: Role of Electron Localization and Symmetry Breaking. Phys. Rev. Lett. 118, 236401 (2017).
    Reprint download: pdf
  2. C. Carbogno, R. Ramprasad, and M. Scheffler,
    Ab initio Green-Kubo Approach for the Thermal Conductivity of Solids. Phys. Rev. Lett. 118, 175901 (2017).
    Reprint download: pdf
  3. L.M. Ghiringhelli, C. Carbogno, S.V. Levchenko, F. Mohamed, G. Huhs, M. Lueders, M. Oliveira, and M. Scheffler,
    Towards efficient data exchange and sharing for big-data driven materials science: metadata and data formats. npj Computational Materials 3, 46 (2017).
    Reprint download: pdf, Supplementary material: pdf DOI: 10.1038/s41524-017-0048-5.
  4. H. Shang, C. Carbogno, P. Rinke, and M. Scheffler,
    Lattice Dynamics Calculations based on Density-functional Perturbation Theory in Real Space. Comp. Phys. Comm. 215, 26-29 (2017).
    Reprint download: pdf DOI:10.1016/j.cpc.2017.02.001.

2016

Articles

  1. L.M. Ghiringhelli, C. Carbogno, S. Levchenko, F. Mohamed, G. Huhs, M. Lueders, M. Oliveira, and M. Scheffler,
    Towards a Common Format for Computational Materials Science Data. Published as "Ψk Scientific Highlight of the Month", n. 131 (July 2016).
    Reprint download: pdf

2015

Articles

  1. F. Knuth, C. Carbogno, V. Atalla, V. Blum, and M. Scheffler,
    All-electron Formalism for Total Energy Strain Derivatives and Stress Tensor Components for Numeric Atom-Centered Orbitals. Comp. Phys. Comm. 190, 33–50 (2015).
    Reprint download: pdf
  2. H. Sezen, H. Shang, F. Bebensee, C. Yang, M. Buchholz, A. Nefedov, S. Heissler, Ch. Carbogno, M. Scheffler, P. Rinke, and Ch. Wöll,
    Evidence for photogenerated intermediate hole polarons in ZnO. Nat. Commun. 6, 6901 (2015).
    Reprint download: pdf, Supplementary material: pdf

2014

Articles

  1. Ch. Carbogno, C.G. Levi, C.G. Van de Walle, and M. Scheffler,
    Ferroelastic switching of doped zirconia: Modeling and understanding from first principles. Phys. Rev. B 90, 144109 (2014).
    Reprint download: pdf

2011

Articles

  1. S.K. Estreicher, D.J. Backlund, C. Carbogno, and M. Scheffler,
    Activation Energies for Diffusion of Defects in Si: The Role of the Exchange-Correlation Functional. Angew. Chem. Int. Ed., 50, 1-6 (2011).
    Reprint download: pdf
  2. T.M. Gibbons, By. Kang, and S.K. Estreicher, and Ch. Carbogno,
    Thermal conductivity of Si nanostructures containing defects: Methodology, isotope effects, and phonon trapping. Phys. Rev. B 84, 035317 (2011).
    Reprint download: pdf

2010

Articles

  1. C. Carbogno, J. Behler, K. Reuter, and A. Gross,
    "Signatures of nonadiabatic O2 dissociation at Al(111): First-principles fewest-switches study" (12 pages). Phys.Rev. B 81, 035410 (2010).
    Reprint download: pdf

2008

Articles

  1. C. Carbogno, J. Behler, A. Groß, and K. Reuter,
    "Fingerprints for spin-selection rules in the interaction dynamics of O2 at Al(111)". Phys. Rev. Lett., 101, 096104 (2008).
    Reprint download: pdf

Within the publication lists the label [abs,src,ps] links to abstract, source file, and postscript version of the respective paper on the e-print archives of xxx.lanl.gov. Source and postscript files are usually transfered as gz-compressed tar-files. If your browser cannot automatically unpack those files you should proceed as follows:

Save the file as paper.tar.gz Execute the following commands (on a UNIX machine): gunzip paper.tar.gz tar -xvf paper.tar

return