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Thomas Bayes

Reverend Thomas Bayes (1701 - 1761). Born in England. Studied logic and
theology at University of Edinburgh, and became a Presbyterian minister.
Became interested in problems of chance, and is most famous for the theorem on
conditional probability that bears his name.
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Schools of Statistical Inference

Since statistics became a discipline, there have been two major
schools of inference

1 Frequentist statistics, pioneered by Ronald Fisher
2 Bayesian statistics, named after Reverend Thomas Bayes

More recently, a third paradigm – empirical risk minimisation – has
become popular; I would consider it frequentist-adjacent

Fisher disliked Bayesian statistics, and his personality dominated
Frequentist approach largely ruled until the 90s

This is largely due to the increase in computing power
Bayesian approaches influenced much of modern machine learning
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Why Bayesian Statistics?

There are many strong reasons to be a Bayesian
1 A unified framework for inference

Point/interval estimation and testing using one idea

2 Extremely flexible model specification
Complex hierarchical models
“Random” parameters
Hidden/latent variables

3 Marries well with computational advances
4 Directly incorporates uncertainty

Takes into account uncertainty/variability in estimation

5 Allows natural incorporation of prior information

(Monash University) Apr 26, 2024 6 / 35



Bayes’ Rule (1)

The primary tool we will use is Bayes’ Rule
Named after Rev. Thomas Bayes

Let X, Y be two R.V.s
Let P(X = x) be the marginal distribution of X
Let P(Y = y | X = x) be the conditional distribution of Y
Then, if we observe Y , Bayes’ rule tells us

P(X = x | Y = y) = P(Y = y | X = x)P(X = x)
P(Y = y)

where
P(Y = y) =

∑
X∈x

P(Y = y | X = x)P(X = x)

is the marginal distribution of Y

Bayes’ rule gives us conditional probability of X given Y
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Bayes’ Rule Example

A woman attends a GP clinic regarding a breast lump
The population frequency of breast cancer (C = 1) 0.0066 (our prior
probability)
The probability of developing a breast lump (L = 1) if :

a woman has breast cancer (C = 1) is 60%
if a woman does not have breast cancer (C = 0) is 5%

What is the probability the woman has breast cancer?

P(C = 1 | L = 1) = P(L = 1 | C = 1)P(C = 1)∑1
c=0 P(L = 1 | C = c)P(C = c)

= 0.6 · 0.0066
0.05 · (1 − 0.0066) + 0.6 · 0.0066

= 0.0738

So before seeing lump, P(C = 1) was 0.0066; after seeing lump the
revised probability is 0.0738
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Bayesian Inference – Setting

How is this related to statistical inference?
In Bayesian inference, we have the following ingredients:

1 An observed sample y = (y1, . . . , yn) from our population
2 A model of our population

p(y | θ), y ∈ Yn, θ ∈ Θ,

parameterised by an unknown θ
⇒ describes probability of y given true parameter is θ

3 A prior probability distribution for our unknown parameter

π(θ), θ ∈ Θ

⇒ describes probability that θ is the true parameter before seeing data

We now treat the unknown parameter as a random variable
=⇒ Allows us to make probabilistic statements about θ
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Bayesian Inference – The Posterior Distribution (1)

We have seen y; we know p(y | θ) and π(θ)
We then apply Bayes’ rule to find p(θ | y):

p(θ | y) = p(y | θ)π(θ)
p(y) ∝ p(y | θ)π(θ)

where
p(y) =

∫
Θ

p(y | θ)π(θ)dθ

is the marginal distribution of the data
=⇒ This quantity is called the posterior distribution

In this framework
π(θ) is the prior probability of model θ generating the data
p(y | θ) is the probability of data y if the true model is θ
p(θ | y) is the posterior probability of model θ being true after
observing data y
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Bayesian Inference – The Posterior Distribution (2)

How to interpret the posterior distribution?

If our prior distribution, π(θ), accurately describes the probability that
different values of θ are the truth (i.e., the population value), then

P(θ ∈ A | y) =
∫

A
p(θ | y)dθ

is the probability the population value of θ is in the set A, given that
we observed the data y = (y1, . . . , yn)

The posterior takes the data we have observed, and uses it to update
our beliefs about how likely different values of θ are to be the
population value
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Bayesian Inference – The Prior Distribution (1)

The prior distribution is the most controversial element of Bayesian
inference

How to interpret the prior distribution?
As a subjective description of prior beliefs about θ

E.g., probability of rat being dead after leaving out bait
It either is or isn’t, but we don’t know for sure until observed – has no
frequency interpretation

As a model of a truly random process
Probability of failure of a component made from a manufacturing line
Yield of a corn-plant of a particular species

Frequentists attack Bayesianism by targeting the prior
Claim is that frequentist stats is free of “personal priors”
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Bayesian Inference – The Prior Distribution (2)

Where do prior distributions come from?
1 Chosen to reflect prior information/beliefs about problem

Prior information can be specific or general, depending on how we
choose π(·)

2 Chosen for mathematical convenience
The choice of prior π(·) leads to simple posterior distributions

3 Created to express prior ignorance
Sometimes called uninformative priors
Created by defining a mathematical concept of ignorance

4 Chosen to match classical procedures (e.g., LASSO or ridge prior)
Can combine different approaches, i.e., convenient prior distribution
that (partially) reflects real prior information
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Bayesian Inference – Summary

The likelihood p(y | θ) describes the probability of seeing data y, if
the population parameter was θ

The prior distribution π(θ) describes the probability that the
population parameter is θ, if we have not seen any data
These form a joint distribution

p(y, θ) = p(y | θ)π(θ)

The posterior distribution p(θ | y) describes the probability θ is the
population parameter, given we have observed y
The marginal distribution p(y) describes the probability of observing
data y if all we know about the population parameter is that it
follows π(θ)

(Monash University) Apr 26, 2024 15 / 35



Bayesian Inference – Summary

The likelihood p(y | θ) describes the probability of seeing data y, if
the population parameter was θ

The prior distribution π(θ) describes the probability that the
population parameter is θ, if we have not seen any data
These form a joint distribution

p(y, θ) = p(y | θ)π(θ)

The posterior distribution p(θ | y) describes the probability θ is the
population parameter, given we have observed y
The marginal distribution p(y) describes the probability of observing
data y if all we know about the population parameter is that it
follows π(θ)

(Monash University) Apr 26, 2024 15 / 35



Outline

1 Introduction

2 Bayesian Basics

3 Using the Posterior for Statistical Inference

4 Example: Bayesian Ridge Regression

(Monash University) Apr 26, 2024 16 / 35



Bayesian Point Estimation

How do we actually use the posterior distribution to make inferences?
Point estimates are statistics of the posterior

Posterior maximum (MAP) – choose θ that maximises posterior

θ̂MAP = arg max
θ

{p(θ | y)}

Tries to select the “most likely” estimate
Posterior mean

θ̂PM =
∫

θ p(θ | y)dθ = E [θ | y]

Uses the posterior average value of θ as the estimate
Bayesian estimates combine information in the prior with information
in the likelihood (i.e., from the observed data)
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Uncertainty of Bayesian Point Estimates

Point estimates give a best “guess” at the parameter values
They do not capture variability/uncertainty

These aspects can be naturally measured using the posterior
distribution
One way to measure the uncertainty about the estimate is posterior
standard deviation: √

V [θ | y]

The more informative is your prior distribution, the smaller (less
uncertainty) the posterior standard deviation will be
What about interval estimates to capture uncertainty?
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Bayesian Credible Sets

Bayesian equivalent of confidence intervals called credible intervals
A 100α% credible interval is any interval (θ−, θ+) such that

P(θ− < θ < θ+ | y) =
∫ θ+

θ−
p(θ | y)dθ = α

where α ∈ (0, 1) is the level of the set
Generally we use centred intervals (e.g., from 2.5% to 97.5%)

Different interpretation from confidence interval:
A 100α% confidence interval is an interval such that for 100α% of
possible datasets, the interval will contain the (fixed) unknown true θ
A 100α% credible interval says that if our prior is accurate, then the
probability that θ ∈ (θ̂−, θ̂+) is α, given we have observed the data y
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The elephant in the room

As we know, the key formula in the Bayesian approach is

p(θ | y) = p(y | θ)π(θ)∫
p(y | θ)π(θ)dθ

which gives us the posterior (after data) distribution describing how
likely different values of θ are to be the value of the population
parameter, given our prior beliefs
This formula depends crucially on evaluating the denominator
Yet for almost all real problems, it cannot be evaluated

Even numerical approaches tend to fail – it is a nasty integral!
Even if we could, we still need to somehow manipulate
multidimensional densities
=⇒ instead we usual approximate the posterior
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Monte Carlo Markov Chain (MCMC)

MCMC is very popular for Bayesian inference
Here we approximate the posterior by a set of m samples

θ(1), . . . , θ(m)

randomly draw from the posterior
We can then approximate posterior statistics using empirical
quantities, e.g.,

E [θ | y] ≈ 1
m

m∑
i=1

θ(i)

Similarly for medians, quantiles, etc.
MCMC algorithms are general and are simulation consistent but can
be slow, especially if you need many samples
General purpose tools (i.e., JAGS, Stan) available
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Variational Bayes

An alternative to MCMC is variational Bayes
We replace the posterior p(θ | y) with an approximation

We choose some parametric distributions to model the posterior
We adjust parameters of approximating distributions to minimise
approximation error

Based on the KL divergence from approximators to true posterior
This formulation avoids the need to compute p(y), i.e., we can use
unnormalised posteriors
In comparison to MCMC, can be much faster and more scalable
There are drawbacks though:

we never know how close our approximation actually is
no matter how long we run the VB search, we are limited in quality of
approximation by the choice of approximating distributions
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Bayesian Prediction (1)

Consider a model p(y | θ) that we want to use for prediction
A prediction is some function of the model, and therefore, a function
of the model parameters, i.e., f(θ)
Examples of predictions

The average value of future realisations of Y from our population
would be predicted by the mean of the fitted distribution:

f(θ) ≡ E
[
Y | θ̂

]
=

∫ ∞

−∞
y p(y | θ̂)dy

Or the probability that a random individual from our population has a
value greater than c would be predicted by

f(θ) ≡ P(Y > c | θ̂) =
∫ ∞

c

p(y | θ̂)dy

and so on
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Bayesian Prediction (2)

How to do Bayesian prediction?
One way is to use a Bayesian estimate of θ, such as the posterior
mean E [θ | y] and plug it in to our model as usual
=⇒ but this ignores the variability in our estimates
Alternatively, use the posterior p(θ | y) to incorporate the uncertainty
As a prediction f(θ) is just a function of a θ, and θ is a random
variable distributed as per the posterior distribution, it follows that
f(θ) is a random variable as well with distribution p(f(θ) | y), i.e.,
there exists a posterior distribution over the predictions
In general this is difficult, but it is easy if we have posterior samples
θ(1), . . . , θ(m); we just evaluate f(θ) for every sample:

f(θ(1)), . . . , f(θ(m))

=⇒ these samples now approximate the posterior of f(θ)
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The Linear Regression Model (1)

In this session we will examine the linear regression model
We have a target (outcome) variable, Y , that we wish to predict
We say that Y is modelled as a linear combination of p explanatory
variables, plus an intercept and a random error:

Y = β0 +
p∑

j=1
βjXj + ε

where
β0 is the intercept
X1, . . . , Xp are explanatory variables
β = (β1, . . . , βp) are the coefficients
ε is the random error
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The Linear Regression Model (2)

If we assume that the error is normally distributed, i.e.

ε ∼ N(0, σ2)

then we can say that

Y ∼ N

β0 +
p∑

j=1
βjXj , σ2


and

β0 sets the average value of Y when all the predictors are zero
βj is the increase in mean of Y per unit increase in predictor Xj ,
above and beyond the effect of β0
σ sets the scale of our errors

For simplicity of exposition, let us assume β0 and σ are known
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Prior Distributions for βj (1)

How to choose a prior for the coefficients βj?
Coefficient βj expresses the effect of expanatory variable Xj on the
mean of Y , above and beyond the average value β0

We might expect, a priori, it is just as likely to be a negative effect as a
positive effect
We might expect, a priori, that any given explanatory variable is likely
to be unassociated with Y

We use a symmetric, bell-shaped distribution centered at βj = 0
Prior “guess” is that Xj is unassociated with Y
Prior probability that P(βj < 0) is same as that P(βj > 0)
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Bayesian Ridge Regression (1)

Let us choose to use a normal prior on βj centered on βj = 0
We have the Bayesian hierarchy

y | β, X ∼ N(Xβ, σ2In)
β | τ ∼ N(0p, τ2σ2Ip)

where τ is a hyperparameter controlling the prior variance (i.e., how
tightly our prior is concentrated around βj = 0)
Apply Bayes rule (multiplying likelihood and prior and normalizing)
yields the posterior distribution for β

β | y ∼ N(AX′y, σ2A)

where
A =

(
X′X + τ−2Ip

)−1

The fact the posterior is also normal is because the prior is conjugate
to the likelihood
(Monash University) Apr 26, 2024 29 / 35



Bayesian Ridge Regression (2)

The posterior mean estimate of β is

E [β | y] =
(
X′X + τ−2Ip

)−1
X′y

which is also the solution to the ridge regression

arg min
β

{
||y − Xβ||2 + τ−2||β||2

}
This is why it is called the Bayesian ridge
As the hyperparameter τ → 0, the estimates shrink towards β → 0p

=⇒ we become more confident in our prior guess that βj = 0
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Bayesian Ridge Regression (3)

The posterior covariance of β is

Cov [β | y] = σ2
(
X′X + τ−2Ip

)−1

As the hyperparameter τ → 0, the variances become smaller
=⇒ our prior becomes more informative about β relative to the data

Recall that squared-prediction error is composed of bias and variance
If we choose τ carefully, we can reduce variance a lot while only
introducing a small amount of bias, and obtain improved prediction
performance over least-squares
In regular ridge regression we would use cross-validation to choose τ
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Bayesian Hyperpriors (1)

How to select the prior hyperparameter τ?
This controls how much prior probability is concentrated around βj = 0

This is where the beauty of Bayes comes to the fore
We don’t use heuristic methods like cross-validation.

Instead, we treat it as an another unknown parameter, put a prior on
it, and estimate it along with everything else!
We use the same machinery to estimate hyperparameters and
parameters.
In contrast to methods like CV, the final posterior incorporates
uncertainty about τ into our estimates of β

A good default prior for scale-type hyperparameters is the
half-Cauchy distribution

π(τ) = 2
π(1 + τ2)
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Bayesian Hyperpriors (2)

Why can we put a prior on our hyperparameter?
Consider a prior distribution π(θ | α) where α is a hyperparameter

Place a hyperprior on α, say π(α)
We can write the joint prior distribution as

π(θ, α) = π(θ | α)π(α)

We could then remove α from the problem by integrating
(marginalising) it out

π(θ) =
∫

π(θ | α)π(α)dα

to get a marginal prior distribution free of α
=⇒ so priors on hyperparameters really just lead to new priors on θ
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Thank you!

An implementation of Bayesian ridge regression in python that
outperforms leave-one-out cross-validation

S. Tew, M. Boley and D.F.Schmidt, “Bayes beats Cross Validation:
Fast and Accurate Ridge Regression via Expectation Maximization”,
NeuRIPS, 2023

pip install fastridge

Code is available at
https://github.com/marioboley/fastridge.git

“bayesreg” R package for Bayesian penalized linear and logistic
regression

Available on CRAN

Thank you for your attention!
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Bayes Inference - A Recap (2)

Quantity Frequentist Bayesian

Model of population p(y | θ), true population parameter θ unknown

Population Parameter True θ unknown, but fixed True θ is a random variable
i.e., θ ∼ θ(π)dθ

Point Estimates Maximum Likelihood θ̂ML Posterior mean, posterior mode
Penalized Maximum Likelihood, etc. General Bayes estimator

Measures of Uncertainty Standard error Posterior standard deviation√
V

[
θ̂ML

] √
V [θ | y]

Interval Estimates 100α% Confidence Intervals 100α% Credible Intervals
A(y) such that P(θ ∈ A(y)) = α A such that P(θ ∈ A | y) = α

if y ∼ p(y | θ), θ unknown but fixed conditional on seeing y

Frequentist vs Bayesian Inference
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