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Thomas Bayes

Reverend Thomas Bayes (1701 - 1761). Born in England. Studied logic and
theology at University of Edinburgh, and became a Presbyterian minister.
Became interested in problems of chance, and is most famous for the theorem on
conditional probability that bears his name.
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Schools of Statistical Inference

@ Since statistics became a discipline, there have been two major
schools of inference

@ Frequentist statistics, pioneered by Ronald Fisher
@ Bayesian statistics, named after Reverend Thomas Bayes

@ More recently, a third paradigm — empirical risk minimisation — has
become popular; | would consider it frequentist-adjacent

o Fisher disliked Bayesian statistics, and his personality dominated
o Frequentist approach largely ruled until the 90s

@ This is largely due to the increase in computing power
o Bayesian approaches influenced much of modern machine learning
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Why Bayesian Statistics?

@ There are many strong reasons to be a Bayesian
@ A unified framework for inference
e Point/interval estimation and testing using one idea

@ Extremely flexible model specification

o Complex hierarchical models
@ “Random” parameters
o Hidden/latent variables

© Marries well with computational advances

© Directly incorporates uncertainty
o Takes into account uncertainty/variability in estimation

© Allows natural incorporation of prior information
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Bayes' Rule (1)

@ The primary tool we will use is Bayes' Rule
o Named after Rev. Thomas Bayes

o Let X, Y betwo R.Vs

o Let P(X = x) be the marginal distribution of X
o Let P(Y = y| X = z) be the conditional distribution of Y’
e Then, if we observe Y, Bayes' rule tells us

PY=y|X=2)PX =2x)

PX=z|Y=y) = PY =)

where
P(Y =y)= > PY =y|X =2)P(X =2)
Xex

is the marginal distribution of Y

@ Bayes' rule gives us conditional probability of X given Y
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Bayes' Rule Example

@ A woman attends a GP clinic regarding a breast lump

o The population frequency of breast cancer (C = 1) 0.0066 (our prior
probability)
e The probability of developing a breast lump (L =1) if :
@ a woman has breast cancer (C' = 1) is 60%
e if a woman does not have breast cancer (C' = 0) is 5%
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Bayes' Rule Example

@ A woman attends a GP clinic regarding a breast lump
o The population frequency of breast cancer (C = 1) 0.0066 (our prior

probability)
e The probability of developing a breast lump (L =1) if :

@ a woman has breast cancer (C' = 1) is 60%
e if a woman does not have breast cancer (C' = 0) is 5%

@ What is the probability the woman has breast cancer?

P(L=1|C = 1B(C=1)

P(C=1|L=1)
e P(L=1]C = )P (Czc)
B 0.6 - 0.0066
~0.05- (1 —0.0066) + 0.6 - 0.0066

= 0.0738

@ So before seeing lump, P(C' = 1) was 0.0066; after seeing lump the
revised probability is 0.0738
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Bayesian Inference — Setting

@ How is this related to statistical inference?
@ In Bayesian inference, we have the following ingredients:

© An observed sample y = (y1,...,yn) from our population
@ A model of our population

p(yl0), ye )", 0o,

parameterised by an unknown 6
= describes probability of y given true parameter is
© A prior probability distribution for our unknown parameter

m(0), €0
= describes probability that 6 is the true parameter before seeing data

@ We now treat the unknown parameter as a random variable
— Allows us to make probabilistic statements about 6
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Bayesian Inference — The Posterior Distribution (1)

e We have seen y; we know p(y|6) and 7 (60)
o We then apply Bayes’ rule to find p(0|y):

(y |0)m(6)

p(]y) =L AR

where

ply) = /@ ply | 0)=(6)do

is the marginal distribution of the data
= This quantity is called the posterior distribution
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Bayesian Inference — The Posterior Distribution (1)

e We have seen y; we know p(y|6) and 7 (60)
o We then apply Bayes’ rule to find p(0|y):

(y |0)m(6)

p(]y) =L AR

where

ply) = /@ ply | 0)=(6)do

is the marginal distribution of the data
= This quantity is called the posterior distribution
@ In this framework
e 7(0) is the prior probability of model 8 generating the data
o p(y|0) is the probability of data y if the true model is 0
o p(@|y) is the posterior probability of model 6 being true after
observing data y
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Bayesian Inference — The Posterior Distribution (2)

@ How to interpret the posterior distribution?

@ If our prior distribution, 7 (), accurately describes the probability that
different values of 6 are the truth (i.e., the population value), then

PO Aly) = [ p(0]y)ds
is the probability the population value of 6 is in the set A, given that

we observed the data 'y = (y1,...,Yn)

@ The posterior takes the data we have observed, and uses it to update
our beliefs about how likely different values of 6 are to be the
population value

(Monash University) Apr 26, 2024 12/35



Bayesian Inference — The Prior Distribution (1)

@ The prior distribution is the most controversial element of Bayesian
inference

@ How to interpret the prior distribution?
e As a subjective description of prior beliefs about 6

o E.g., probability of rat being dead after leaving out bait
o It either is or isn't, but we don't know for sure until observed — has no
frequency interpretation

e As a model of a truly random process
o Probability of failure of a component made from a manufacturing line
@ Yield of a corn-plant of a particular species

@ Frequentists attack Bayesianism by targeting the prior
e Claim is that frequentist stats is free of “personal priors”
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@ Where do prior distributions come from?
@ Chosen to reflect prior information/beliefs about problem

@ Prior information can be specific or general, depending on how we
choose 7(-)

@ Chosen for mathematical convenience
@ The choice of prior 7(-) leads to simple posterior distributions

© Created to express prior ignorance

@ Sometimes called uninformative priors
o Created by defining a mathematical concept of ignorance

@ Chosen to match classical procedures (e.g., LASSO or ridge prior)

@ Can combine different approaches, i.e., convenient prior distribution
that (partially) reflects real prior information
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Bayesian Inference — Summary

@ The likelihood p(y | @) describes the probability of seeing data y, if
the population parameter was 6

@ The prior distribution 7(6) describes the probability that the
population parameter is 6, if we have not seen any data

@ These form a joint distribution

p(y,0) = p(y|0)7(0)
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Bayesian Inference — Summary

@ The likelihood p(y | @) describes the probability of seeing data y, if
the population parameter was 6

@ The prior distribution 7(6) describes the probability that the
population parameter is 6, if we have not seen any data

@ These form a joint distribution

p(y,0) = p(y|0)7(0)

@ The posterior distribution p(f | y) describes the probability 6 is the
population parameter, given we have observed y

@ The marginal distribution p(y) describes the probability of observing
data y if all we know about the population parameter is that it
follows 7(0)
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© Using the Posterior for Statistical Inference
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Bayesian Point Estimation

@ How do we actually use the posterior distribution to make inferences?
@ Point estimates are statistics of the posterior
o Posterior maximum (MAP) — choose 6 that maximises posterior

éMAP = arg ;nax {p(9 | Y)}

Tries to select the “most likely” estimate
e Posterior mean

éPM:/emmy)de:JEww]

Uses the posterior average value of 6 as the estimate

@ Bayesian estimates combine information in the prior with information
in the likelihood (i.e., from the observed data)
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Uncertainty of Bayesian Point Estimates

@ Point estimates give a best “guess” at the parameter values
e They do not capture variability /uncertainty

These aspects can be naturally measured using the posterior

distribution

@ One way to measure the uncertainty about the estimate is posterior
standard deviation:

Vigly]

The more informative is your prior distribution, the smaller (less
uncertainty) the posterior standard deviation will be

What about interval estimates to capture uncertainty?
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Bayesian Credible Sets

@ Bayesian equivalent of confidence intervals called credible intervals
e A 1000% credible interval is any interval (6_, 6) such that

7}
PO <0<0:ly)= [ pOly)ds=a
6

where a € (0,1) is the level of the set
o Generally we use centred intervals (e.g., from 2.5% to 97.5%)
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Bayesian Credible Sets

@ Bayesian equivalent of confidence intervals called credible intervals

e A 1000% credible interval is any interval (6_, 6) such that

0+
PO <0<0:ly)= [ pOly)ds=a
0_
where a € (0,1) is the level of the set
o Generally we use centred intervals (e.g., from 2.5% to 97.5%)
o Different interpretation from confidence interval:

o A 100a% confidence interval is an interval such that for 100a% of
possible datasets, the interval will contain the (fixed) unknown true 6

o A 100a% credible interval says that if our prior is accurate, then the
probability that 6 € (é_, é+) is a, given we have observed the data y
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The elephant in the room

@ As we know, the key formula in the Bayesian approach is

oy |9)m()
I p(y | 68)=(6)do
which gives us the posterior (after data) distribution describing how

likely different values of # are to be the value of the population
parameter, given our prior beliefs

p(@y)

@ This formula depends crucially on evaluating the denominator
@ Yet for almost all real problems, it cannot be evaluated
e Even numerical approaches tend to fail — it is a nasty integral!
@ Even if we could, we still need to somehow manipulate
multidimensional densities
—> instead we usual approximate the posterior
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Monte Carlo Markov Chain (MCMC)

o MCMC is very popular for Bayesian inference

@ Here we approximate the posterior by a set of m samples

o, ... otm

randomly draw from the posterior
@ We can then approximate posterior statistics using empirical
quantities, e.g.,
m

E[0]y]~

@ Similarly for medians, quantiles, etc.

@ MCMC algorithms are general and are simulation consistent but can
be slow, especially if you need many samples

@ General purpose tools (i.e., JAGS, Stan) available
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Variational Bayes

An alternative to MCMC is variational Bayes

We replace the posterior p(f|y) with an approximation
o We choose some parametric distributions to model the posterior

@ We adjust parameters of approximating distributions to minimise
approximation error

o Based on the KL divergence from approximators to true posterior

@ This formulation avoids the need to compute p(y), i.e., we can use
unnormalised posteriors

In comparison to MCMC, can be much faster and more scalable

There are drawbacks though:

e we never know how close our approximation actually is
e no matter how long we run the VB search, we are limited in quality of
approximation by the choice of approximating distributions
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Bayesian Prediction (1)

e Consider a model p(y | @) that we want to use for prediction

@ A prediction is some function of the model, and therefore, a function
of the model parameters, i.e., f(0)
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Bayesian Prediction (1)

e Consider a model p(y | @) that we want to use for prediction
@ A prediction is some function of the model, and therefore, a function
of the model parameters, i.e., f(0)

@ Examples of predictions

o The average value of future realisations of Y from our population
would be predicted by the mean of the fitted distribution:

o0

1O)=E[V18] = [ usty|6)ay
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Bayesian Prediction (1)

e Consider a model p(y | @) that we want to use for prediction

@ A prediction is some function of the model, and therefore, a function
of the model parameters, i.e., f(0)

@ Examples of predictions

o The average value of future realisations of Y from our population
would be predicted by the mean of the fitted distribution:

o0

1O)=E[V18] = [ usty|6)ay

o Or the probability that a random individual from our population has a
value greater than ¢ would be predicted by

f<e>zP<Y>c|é>=/_°°p<y|é>dy

and so on
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Bayesian Prediction (2)

@ How to do Bayesian prediction?

@ One way is to use a Bayesian estimate of @, such as the posterior
mean E [@|y] and plug it in to our model as usual
= but this ignores the variability in our estimates

@ Alternatively, use the posterior p(@|y) to incorporate the uncertainty
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Bayesian Prediction (2)

How to do Bayesian prediction?

One way is to use a Bayesian estimate of 6, such as the posterior
mean E [@|y] and plug it in to our model as usual

= but this ignores the variability in our estimates

Alternatively, use the posterior p(@|y) to incorporate the uncertainty
As a prediction f(8) is just a function of a 6, and € is a random
variable distributed as per the posterior distribution, it follows that
f(8) is a random variable as well with distribution p(f(0)|y), i.e.,
there exists a posterior distribution over the predictions

In general this is difficult, but it is easy if we have posterior samples
0, ...,0™); we just evaluate f(8) for every sample:

FO, ... F(O™)

—> these samples now approximate the posterior of f(0)
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@ Example: Bayesian Ridge Regression
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The Linear Regression Model (1)

@ In this session we will examine the linear regression model
@ We have a target (outcome) variable, Y, that we wish to predict

@ We say that Y is modelled as a linear combination of p explanatory
variables, plus an intercept and a random error:

p
Y=50+Zﬂij+€
7j=1

where

e [y is the intercept

e Xi,...,X, are explanatory variables
o B=(B1,...,0p) are the coefficients
e ¢ is the random error
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The Linear Regression Model (2)

@ If we assume that the error is normally distributed, i.e.
e ~ N(0,0?)

then we can say that

p
Y ~N|Bo+ )Y BiX;, o
j=1

and

e [y sets the average value of Y when all the predictors are zero

o f3; is the increase in mean of Y per unit increase in predictor X,
above and beyond the effect of 3

e 0o sets the scale of our errors

@ For simplicity of exposition, let us assume 5y and ¢ are known
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Prior Distributions for 3, (1)

@ How to choose a prior for the coefficients 3;7

o Coefficient 3; expresses the effect of expanatory variable X; on the
mean of Y, above and beyond the average value 3y
o We might expect, a priori, it is just as likely to be a negative effect as a
positive effect
o We might expect, a priori, that any given explanatory variable is likely
to be unassociated with Y
@ We use a symmetric, bell-shaped distribution centered at 8; = 0

o Prior “guess” is that X is unassociated with ¥’
o Prior probability that P(3; < 0) is same as that P(5; > 0)
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Bayesian Ridge Regression (1)

@ Let us choose to use a normal prior on [3; centered on 3; = 0
@ We have the Bayesian hierarchy

y|B,X ~ N(XB,0%1,)
/6|7' ~ N(Opu72021p)

where 7 is a hyperparameter controlling the prior variance (i.e., how
tightly our prior is concentrated around 3; = 0)

@ Apply Bayes rule (multiplying likelihood and prior and normalizing)
yields the posterior distribution for 3

Bly ~N(AX'y,0°A)
where B
A= (XX 4772,

@ The fact the posterior is also normal is because the prior is conjugate
to the likelihood
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Bayesian Ridge Regression (2)

@ The posterior mean estimate of 3 is
-1
E[B|y] = (XX+77,) XYy
which is also the solution to the ridge regression

a@?mQW—XMF+fﬂWW}

@ This is why it is called the Bayesian ridge

@ As the hyperparameter 7 — 0, the estimates shrink towards 8 — 0,
== we become more confident in our prior guess that 3; = 0

(Monash University) Apr 26, 2024 30/35



Bayesian Ridge Regression (3)

@ The posterior covariance of 3 is
-1
Cov [8|y] = ¢* (X’X + 7'_2Ip)

@ As the hyperparameter 7 — 0, the variances become smaller
= our prior becomes more informative about 3 relative to the data

@ Recall that squared-prediction error is composed of bias and variance

@ If we choose 7 carefully, we can reduce variance a lot while only
introducing a small amount of bias, and obtain improved prediction
performance over least-squares

@ In regular ridge regression we would use cross-validation to choose 7
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Bayesian Hyperpriors (1)

@ How to select the prior hyperparameter 77
e This controls how much prior probability is concentrated around 5; =0
@ This is where the beauty of Bayes comes to the fore
o We don't use heuristic methods like cross-validation.
@ Instead, we treat it as an another unknown parameter, put a prior on
it, and estimate it along with everything else!
@ We use the same machinery to estimate hyperparameters and
parameters.

@ In contrast to methods like CV, the final posterior incorporates
uncertainty about 7 into our estimates of 8

@ A good default prior for scale-type hyperparameters is the
half-Cauchy distribution
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Bayesian Hyperpriors (2)

@ Why can we put a prior on our hyperparameter?

e Consider a prior distribution 7(6 | «) where « is a hyperparameter
o Place a hyperprior on «, say 7(«)

@ We can write the joint prior distribution as
m(0, o) = 7w(0 ] a)m(a)

@ We could then remove a from the problem by integrating
(marginalising) it out

(6) = / (0| @)m(a)da

to get a marginal prior distribution free of «
= so priors on hyperparameters really just lead to new priors on 6
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@ An implementation of Bayesian ridge regression in python that
outperforms leave-one-out cross-validation

o S. Tew, M. Boley and D.F.Schmidt, “Bayes beats Cross Validation:

Fast and Accurate Ridge Regression via Expectation Maximization™,
NeuRIPS, 2023

@ pip install fastridge

@ Code is available at
e https://github.com/marioboley/fastridge.git

@ "bayesreg” R package for Bayesian penalized linear and logistic
regression
e Available on CRAN

@ Thank you for your attention!
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Bayes Inference - A Recap (2)

Quantity Frequentist Bayesian

Model of population p(y | 0), true population parameter 6 unknown

Population Parameter True 6 unknown, but fixed True 6 is a random variable

ie, 0 ~ 0(mw)do

Point Estimates Maximum Likelihood éML Posterior mean, posterior mode
Penalized Maximum Likelihood, etc. General Bayes estimator

Measures of Uncertainty Standard error Posterior standard deviation

\/V[éML] VoYl

Interval Estimates 100a% Confidence Intervals 100a% Credible Intervals
A(y) such that P(6 € A(y)) = « Asuchthat P(0 € Aly) = o
if y ~ p(y|6), 6 unknown but fixed conditional on seeing y

Frequentist vs Bayesian Inference
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