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MM11.6: Uncertainty quantification by direct propagation of shallow ensembles (DPOSE)
Matthias Kellner and Michele Ceriotti

Kellner and Ceriotti, arXiv:2402.16621v1 (2024)
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Benchmarking of SOAP-BPNN MLIP

Out-of-distribution UQ

Predicted vs. empirical errors for force components
With MLIP-MD on liquid water (500 K)

Well-calibrated uncertainty 
estimates without having explicit 
force uncertainty term in the loss

Good agreement between 
predicted and non-Gaussian 
empirical error distribution

DPOSE features a higher discriminating power between 
in-distribution and out-of-distribution structures



MM20.6: Experiment-driven atomistic materials modeling:
Combining XPS and MLPs infer the structure of a-COx Tigany Zarrouk (Miguel Caro’s group in Aalto Uni.) et al.

Reference: https://arxiv.org/pdf/2402.03219.pdf
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MM25.1: A fuzzy classification framework to identify equivalent atoms in complex materials
and molecules King Shun Lai, Sebastian Matera et al.
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MM62.5: Machine learned interatomic potential for microstructure formation in Ni-rich NiAl 
systems Adam Fisher, Peter Brommer et al.

Precipitates in nickel-based superalloys form during heat treatment on a time 
scale inaccessible to direct molecular dynamics simulation, but can be explored 
using kinetic Monte Carlo (kMC) studies. This requires reliable values for the 
barrier energies separating distinct atomic configurations. We have previously 
described a method to find and validate barriers in this system and found that 
classical potentials such as embedded-atom method (EAM) fail to reproduce the 
correct ordering of barriers. Modern machine-learned interatomic potentials 
(MLIPs) have been shown to have an accuracy near that of density functional 
theory (DFT) at a fraction of the cost. In this work, we fit an atomic cluster 
expansion (ACE) MLIP for nickel-rich NiAl systems using ACE hyper-active 
learning (ACEHAL), training on a series of structures, from cubic unit cells 
of Ni and Ni3Al to large (>100w atoms) NiAl solid solution cells. This is 
complemented by HAL runs on saddle point configurations, which improve the 
description of energy barriers. The MLIP barriers are then validated and 
compared to several traditional interatomic potentials.
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O: Surface Physics



O1: (Surface-)science-driven machine learning
Johannes T. Margraf

This talk discusses research towards the establishment of a science-driven approach to 
machine learning (ML) for surface science and chemistry [1]. In many fields, ML is a 
fundamentally data-driven endeavour, meaning that specific databases and benchmark 
problems (i.e. big data) are at the center of methodological development. While this has 
certainly led to tremendous advances in recent years (e.g. in image generation and 
natural language processing), the full diversity and complexity of surface chemistry 
cannot be adequately represented by static predefined databases. We therefore aim to 
build accurate data-efficient models which do not require enormous reference datasets 
for training. This way, our methods can be applied to a wide range of problems of 
scientific interest and not just to those for which big data happens to be available. To 
this end, we explicitly incorporate chemical and physical information into the ML models 
[2] and integrate the data generation or selection process with the model training [3]. 
Several examples of this in the context of the atomistic simulation of catalytic processes 
on surfaces will be discussed.

*Activity to ORR

[1] J.T. Margraf, Angew. Chemie, 62, e202219170 (2023).  [2] K. Chen et al. Chem. Sci., 14, 4913-4922 (2023).
[3] H. Jung et al. NPJ Comput. Mater., 9, 114 (2023).



O10.5: Multi-channel Dyson equation: coupling many-body Green’s functions
Arjan Berger

We present the multichannel Dyson equation that combines two or more many-body Green’s functions to describe the electronic 
structure of materials. In this work we use it to model photoemission spectra by coupling the one-body Green’s function with the 
three-body Green’s function. We demonstrate that, unlike methods using only the one-body Green’s function, our approach puts the 
description of quasi-particles and satellites on an equal footing. We propose a multichannel self-energy that is static and only contains 
the bare Coulomb interaction, making frequency convolutions and self-consistency unnecessary. Despite its simplicity, we 
demonstrate with a diagrammatic analysis that the physics it describes is extremely rich. Finally, we present a framework based on an 
effective Hamiltonian that can be solved for any many-body system using standard numerical tools. 



O42.5: Quasiparticle Self-Consistent GW Study of Simple Metals
Christoph Friedrich et al.

… We show that, while DFT overestimates the bandwidth of 
most of the materials, the GW quasiparticle renormalization 
corrects the bandwidths in the right direction, but a full 
self-consistent calculation is needed to consistently achieve 
good agreement with photoemission data. The results mainly 
confirm the common belief that simple metals can be regarded 
as nearly free electron gases with weak electronic correlation.



O50.4: Cu Oxide Nanoparticles for Virus Inactivation
Daniel Silvan Dolling et al.

Copper and its oxides are well known for their antiviral and antibacterial properties, more recently including the inactivation of 
SARS-CoV-2 [1, 2, 3]. The combination of Cu oxides with TiO2 has attracted interest due to the photocatalytic activity of the combined 
system. 

[1] M. Hosseini et al., Scientific Reports 12 (2021), 5919-5928. [2] A. Purniawan et al., Scientific Reports 12 (2022).
[3] M. Liu et al., J. Mater. Chem. A 3 (2015), 17312-17319.

For the photocatalytic activity, the specific oxidation state of Cu is paramount, 
as the oxidation states offer different pathways for visible light activity. Up to 
now, most research regarding virus inactivation has focused on powder 
systems. Here, we investigate the effects of different Cu nanoparticle sizes 
and coverages on single crystalline TiO2(110) surface by X-ray photoelectron 
spectroscopy(XPS). Moreover, as the oxide state is playing a major role in 
the (photo-)activity, we investigate the in-situ oxidation of Cu nanoparticles 
via XRD, XPS and SEM. 



O82.6: Electronic excited states from physically constrained machine learning
Divya Suman and Michele Ceriotti

Cignoni et al., ACS Cent. Sci. (2024)

Indirect learning of symmetry-adapted of pseudo-Hamiltonian

Best training protocol

Combining multiple targets leads to more accurate and generaziable model for both eigenvalues and 
atomic charges compared to direct Hamiltonian learning under minimal basis



O82.6: Electronic excited states from physically constrained machine learning
Divya Suman and Michele Ceriotti

Cignoni et al., ACS Cent. Sci. (2024)

Large basis sets Electronic excitations
Target: sTDA B3LYP/def2-TZVP
Prediction: ML + sTDA

Generalization

Vibrational Spectra (Anthracene)
Excellent transferability for evaluation of derived electronic properties 
and making predictions for larger, more complex compounds

Take home message: “Reproducing the mathematical structure of the 
quantum mechanical approximations is more effective than explicitly 
targeting the value of approximate electronic-structure quantities”



O96.3: The mechanism of electrochemical CO2 reduction to post Co and C2+ products
over single atom catalysts Michael Busch et al.

Electrochemical reduction of CO2 to CO or post CO products is of central importance for energy storage and 
conversion. A promising class of catalysts for CO2 reduction are single atom catalysts (SACs) which consist of 
a single metal atom embedded into graphene. These materials are generally believed to only form C1 
compounds. However, recent experiments indicate, that methane together with minor amounts of products 
with 2 or more carbon atoms are formed over Fe phthalocyanine complexes, which are structurally similar to 
classical SACs [1].

[1] S.-T. Dong, C. Xu, B. Lassalle-Kaiser Chem. Sci. 14 (2023) 550.
[2] R. Khakpour, K. Farshadfar, M. Busch et al. submitted.

In this contribution we will explore the reaction routes from CO2 to 
methane and C2+ compounds using density functional theory (DFT) 
computations [2]. Our results indicate, that the selectivity between 
different products mainly depends on activation barriers and is strongly 
influenced by the CO and proton concentration close to the electrode.
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TT: Low Temperature Physics



TT 2.8: Machine determination of a phase diagram with and without deep learning
Burak Çivitioğlu et al.
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HL: Semiconductor Physics



HL38.5: Growth, catalysis, and faceting of ɑ-Ga2O3 and ɑ-(InxGa1-x)2O3 on m-plane ɑ-Al2O3 by 
molecular beam epitaxy Martin S. Williams, Patrick Vogt et al.

M. Williams et al., APL Mater. 12, 011120 (2024)
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● RMe>2    In acts as catalysts and expand the Ga2O3 growth windows
● RMe<2    In incorporate in the layer
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SYES: 
Symposium Advances in Ab-Initio Electronic 
Structure Theory of Time-Dependent and 
Non-Equilibrium Phenomena
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SYES 1.2: Probing the transport of the interacting electron-phonon system self-consistently 
and ab initio Nakib Protik

In the materials where phonons and the charge 
carriers coexist and interact with each other, the 
transport of one system induces the transport of the 
other. This is known as the mutual electron-phonon 
drag. In order to capture the dragful charge, heat, 
and thermoelectric transport in such materials, the 
kinetic equations of both types of quasiparticles have 
to be solved self-consistently. While the formal 
structure of the coupled kinetic equations has been 
known since 1930 [1], it is only recently that a fully ab 
initio, coupled electron-phonon Boltzmann transport 
formalism, called elphbolt [2], has been developed. 
This has opened the avenue for the parameters-free 
and in silico probing of the dragful transport.

[1] Peierls, R. Ann. Phys. 396, 121-148 (1930).
[2] Protik, et al. npj Comput Mater 8, 28 (2022).

https://github.com/nakib/elphbolt



SYES 1.2: Probing the transport of the interacting electron-phonon system self-consistently 
and ab initio Nakib Protik

ph-ph scattering:

ph-e drag term:

phonon self term:



SYES 1.2: Probing the transport of the interacting electron-phonon system self-consistently 
and ab initio Nakib Protik

Drag term plays important role in Seebeck coefficient, and less important role in mobility and phonon thermal 
conductivity, especially at high temperatures.
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F18.00009 Uncovering interpretable low-dimensional geometric structures in gene expression 
using curvature regularized variational autoencoders Jason Kim et al.

Meso-scale structure in Dimension reduction
Dimension reduction in ML.

PCA - linear model -> have meso-scale structure

t-SNE
UMAP - two popular nonlinear model
-> no meso-scale structure

Γ-VAE (this talk) - nonlinear model with
Curvature regularization
Normal VAE + curvature regularization

Kim, J. Z., Perrin-Gilbert, N., Narmanli, E., Klein, P., Myers, C. R., Cohen, I., ... &
Sethna, J. P. (2024). $\Gamma $-VAE: Curvature regularized variational autoencoders
for uncovering emergent low dimensional geometric structure in high dimensional data.
arXiv preprint arXiv:2403.01078.

https://www.kaggle.com/code/bextuychiev/beautiful-umap-t
utorial-on-100-dimensional-data

UMAP cluster close in UMAP
doesn’t guarantee similar



F18.00009 Uncovering interpretable low-dimensional geometric structures in gene expression 
using curvature regularized variational autoencoders Jason Kim et al.

Kim, J. Z., Perrin-Gilbert, N., Narmanli, E., Klein, P., Myers, C. R., Cohen, I., ... &
Sethna, J. P. (2024). $\Gamma $-VAE: Curvature regularized variational autoencoders
for uncovering emergent low dimensional geometric structure in high dimensional data.
arXiv preprint arXiv:2403.01078.

Meso-scale structure (Long-range covariance)



F18.00009 Uncovering interpretable low-dimensional geometric structures in gene expression 
using curvature regularized variational autoencoders Jason Kim et al.

A “global” embedding of all kinds of cells by gene expression

A 3D map for the cells



N62.00006 Materials Discovery Using Simulations and Deep Learning
Uwe Bergmann

Toward Universal Force Field

A. Merchant et al., Nature 624, 80 (2023).

~48000 known stable structure => 2.2 million stable structure (based on convex hull)

Nequip model for 
bulk solids with
all elements

Pretrained on atomic relaxation data (>10^8 data 
points). Works fine for molecular dynamics. 
Pretrained model seems to be pretty reliable with 
error similar to randomly initialized model trained 
on ~1000 data points



N62.00006 Materials Discovery Using Simulations and Deep Learning
Uwe Bergmann

Significantly augment materials data through ionic substitution and symmetry-aware partial substitutions.
→ 109 Candidate materials (Large enough to observe the Emergence in materials science)

Emergence

A. Merchant et al., Nature 624, 80 (2023).



N62.00006 Materials Discovery Using Simulations and Deep Learning
Uwe Bergmann



S56.00005 Using first principles computations to understand and search for new transparent 
conducting materials Geoffroy Hautier

Hole Mobility in CuI AMSET approach & analysis
- Polar optical phonons (POP)
- Acoustic deformation potential (ADP)
- Ionized impurities (IMP)
- Piezoelectric effects (PIE)

IBTE (Iterative Boltzmann Transport Equation)
+ Ionized impurities (IMP) performs the best.

J. Willis et al., Chem. Mater. 
35, 8995 (2023).



W18.00001: Simulating structural phase transitions with simple models
Julia Dshemuchadse (Cornell University)

Reference: PNAS2021  Vol. 118  No. 21  e2024034118
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Thank you for your contributions!


