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MM11.6: Uncertainty quantification by direct propagation of shallow ensembles (DPOSE)
Matthias Kellner and Michele Ceriotti
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MM11.6: Uncertainty quantification by direct propagation of shallow ensembles (DPOSE)

Matthias Kellner and Michele Ceriotti

Benchmarking of SOAP-BPNN MLIP Predicted vs. empirical errors for force components
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MM20.6: Experiment-driven atomistic materials modeling:
Combining XPS and MLPs infer the structure of a-COX Tigany Zarrouk (Miguel Caro’s group in Aalto Uni.) et al.
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Reference: https://arxiv.org/pdf/2402.03219.pdf




MM20.6: Experiment-driven atomistic materials modeling:
Combining XPS and MLPs infer the structure of a-COX Tigany Zarrouk (Miguel Caro’s group in Aalto Uni.) et al.
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MM25.1: A fuzzy classification framework to identify equivalent atoms in complex materials
and molecules King Shun Lai, Sebastian Matera et al.
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MM62.5: Machine learned interatomic potential for microstructure formation in Ni-rich NiAl
systems Adam Fisher, Peter Brommer et al.

Precipitates in nickel-based superalloys form during heat treatment on a time
scale inaccessible to direct molecular dynamics simulation, but can be explored
using kinetic Monte Carlo (kMC) studies. This requires reliable values for the
barrier energies separating distinct atomic configurations. We have previously
described a method to find and validate barriers in this system and found that
classical potentials such as embedded-atom method (EAM) fail to reproduce the
correct ordering of barriers. Modern machine-learned interatomic potentials
(MLIPs) have been shown to have an accuracy near that of density functional
theory (DFT) at a fraction of the cost. In this work, we fit an atomic cluster
expansion (ACE) MLIP for nickel-rich NiAl systems using ACE hyper-active
learning (ACEHAL), training on a series of structures, from cubic unit cells
of Ni and Ni3Al to large (>100w atoms) NiAl solid solution cells. This is
complemented by HAL runs on saddle point configurations, which improve the
description of energy barriers. The MLIP barriers are then validated and
compared to several traditional interatomic potentials.

DFT and ACE energy barrier difference

Histogram of the barrier difference
S
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O1: (Surface-)science-driven machine learning
Johannes T. Margraf

This talk discusses research towards the establishment of a science-driven approach to a Oprws =~
machine learning (ML) for surface science and chemistry [1]. In many fields, ML is a | "R o oa,
fundamentally data-driven endeavour, meaning that specific databases and benchmark “AgaoPdeR o~
problems (i.e. big data) are at the center of methodological development. While this has
certainly led to tremendous advances in recent years (e.g. in image generation and
natural language processing), the full diversity and complexity of surface chemistry
cannot be adequately represented by static predefined databases. We therefore aim to
build accurate data-efficient models which do not require enormous reference datasets

100 | : .. [

Relative cost to Pt %

for training. This way, our methods can be applied to a wide range of problems of 150 |
scientific interest and not just to those for which big data happens to be available. To

this end, we explicitly incorporate chemical and physical information into the ML models .
[2] and integrate the data generation or selection process with the model training [3]. -m(.) 50 n.)o 150 200 250 300

| | f this in th text of the atomistic simulati f catalvti Activity relative to Pt(111) %
Severa examples o IS INn The context O € atomistic simulation or catalytiC processes *ACtIVIty to ORR

on surfaces will be discussed.

[1]1 J.T. Margraf, Angew. Chemie, 62, €202219170 (2023). [2] K. Chen et al. Chem. Sci., 14, 4913-4922 (2023).
[3] H. Jung et al. NPJ Comput. Mater., 9, 114 (2023).



010.5: Multi-channel Dyson equation: coupling many-body Green’s functions
Arjan Berger

We present the multichannel Dyson equation that combines two or more many-body Green’s functions to describe the electronic
structure of materials. In this work we use it to model photoemission spectra by coupling the one-body Green’s function with the
three-body Green'’s function. We demonstrate that, unlike methods using only the one-body Green’s function, our approach puts the
description of quasi-particles and satellites on an equal footing. We propose a multichannel self-energy that is static and only contains
the bare Coulomb interaction, making frequency convolutions and self-consistency unnecessary. Despite its simplicity, we

demonstrate with a diagrammatic analysis that the physics it describes is extremely rich. Finally, we present a framework based on an
effective Hamiltonian that can be solved for any many-body system using standard numerical tools.
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042 5: Quasiparticle Self-Consistent GW Study of Simple Metals

Christoph Friedrich et al.

. We show that, while DFT overestimates the bandwidth of

most of the materials, the GW quasiparticle renormalization

corrects the bandwidths in the right direction, but a full
self-consistent calculation is needed to consistently achieve

good agreement with photoemission data. The results mainly
confirm the common belief that simple metals can be regarded
as nearly free electron gases with weak electronic correlation.
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056.4: Cu Oxide Nanoparticles for Virus Inactivation
Daniel Silvan Dolling et al.

Copper and its oxides are well known for their antiviral and antibacterial properties, more recently including the inactivation of

SARS-CoV-2 [1, 2, 3]. The combination of Cu oxides with TiO, has attracted interest due to the photocatalytic activity of the combined
system.

Photocatalytic Virus Inactivation
For the photocatalytic activity, the specific oxidation state of Cu is paramount,

as the oxidation states offer different pathways for visible light activity. Up to : . k\_kﬁl . Is it nossibie to

now, most research regarding virus inactivation has focused on powder %: AN = S optimize Cu(oxide)
systems. Here, we investigate the effects of different Cu nanoparticle sizes i .’_ :.:Z:i:;‘i’:::"’ Vettex
and coverages on single crystalline TiO,(110) surface by X-ray photoelectron s m:", properties?
spectroscopy(XPS). Moreover, as the oxide state is playing a major role in S

the (photo-)activity, we investigate the in-situ oxidation of Cu nanoparticles
via XRD, XPS and SEM.

cesy.
150 Owide Nancparscies for Virus Wactivation | DPG Conterence Berie| Dankl Shvan Doling | 20,00 2024 |

[1] M. Hosseini et al., Scientific Reports 12 (2021), 5919-5928. [2] A. Purniawan et al., Scientific Reports 12 (2022).
[38] M. Liu et al., J. Mater. Chem. A 3 (2015), 17312-17319.



082.6: Electronic excited states from physically constrained machine learning

Divya Suman and Michele Ceriotti
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Combining multiple targets leads to more accurate and generaziable model for both eigenvalues and
atomic charges compared to direct Hamiltonian learning under minimal basis

Cignoni et al., ACS Cent. Sci. (2024)




Prediction (eV)

Cignoni et al., ACS Cent. Sci. (2024)

082.6: Electronic excited states from physically constrained machine learning

Divya Suman and Michele Ceriotti
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096 3: The mechanism of electrochemical CO, reduction to post Co and C,, products

over single atom catalysts Michael Busch et al.

Electrochemical reduction of CO, to CO or post CO products is of central importance for energy storage and
conversion. A promising class of catalysts for CO, reduction are single atom catalysts (SACs) which consist of
a single metal atom embedded into graphene. These materials are generally believed to only form C,
compounds. However, recent experiments indicate, that methane together with minor amounts of products
with 2 or more carbon atoms are formed over Fe phthalocyanine complexes, which are structurally similar to
classical SACs [1].

In this contribution we will explore the reaction routes from CO, to
methane and C,, compounds using density functional theory (DFT)
computations [2]. Our results indicate, that the selectivity between

different products mainly depends on activation barriers and is strongly /“K

Purple = Fe(™I")is active species Below -0.91 V¢

. . N —
influenced by the CO and proton concentration close to the electrode. :
v N N ' }0
/CQ c® ’C\ H—C\ _H
C, formation ' C;M, and C;M, formation

0.50 eV
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[1]1 S.-T. Dong, C. Xu, B. Lassalle-Kaiser Chem. Sci. 14 (2023) 550.
[2] R. Khakpour, K. Farshadfar, M. Busch et al. submitted.
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TT 2.8: Machine determination of a phase diagram with and without deep learning

Burak Civitioglu et al.
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TT 2.8: Machine determination of a phase diagram with and without deep learning
Burak GCivitioglu et al.
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M. Williams et al., APL Mater. 12, 011120 (2024)
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e Formation of a-(In Ga, ),0,, [-(In. Ga, ,),0,, a-Ga,O,

° RMe>2
° RMe<2

In acts as catalysts and expand the Ga,O, growth windows

In incorporate in the layer

M. Williams et al., APL Mater. 12, 011120 (2024)
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HL38.5: Growth, catalysis, and faceting of a-Ga,O, and a-(In, Ga, ),0, on m-plane a-Al,O, by

molecular beam epitaxy Martin S. Williams, Patrick Vogt et al.
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e R, <2 Inincorporate in the layer

M. Williams et al., APL Mater. 12, 011120 (2024)
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Symposium Advances in Ab-Initio Electronic
Structure Theory of Time-Dependent and
Non-Equilibrium Phenomena




SYE‘S 1.2: Probing the transport of the interacting electron-phonon system self-consistently

and ab initio Nakib Protik

elphbolt

https://github.com/nakib/elphbolt

VT field

e: Lk = Iozk + AImk[ mk] + AI}p)zk[qu]

ph: Fyq = FO + AF; [Foq] HAFD, L]

E field:

€: Jmk JO mk £ AJmk["]'mk] = AJmk[G ]

ph: Guq = 99/' + AGE [G.q] +AGE [1,].

In the materials where phonons and the charge
carriers coexist and interact with each other, the
transport of one system induces the transport of the
other. This is known as the mutual electron-phonon
drag. In order to capture the dragful charge, heat,
and thermoelectric transport in such materials, the
kinetic equations of both types of quasiparticles have
to be solved self-consistently. While the formal
structure of the coupled kinetic equations has been
known since 1930 [1], it is only recently that a fully ab
initio, coupled electron-phonon Boltzmann transport
formalism, called elphbolt [2], has been developed.
This has opened the avenue for the parameters-free
and in silico probing of the dragful transport.

[1] Peierls, R. Ann. Phys. 396, 121-148 (1930).
[2] Protik, et al. npj Comput Mater 8, 28 (2022).




SYES 1.2: Probing the transport of the interacting electron-phonon system self-consistently
and ab initio Nakib Protik

ph-ph scattering: {Fi’q} _ {hwsq/T} Vsq
G, 0 Jwih
. AFSSq . __1___ 1 - Fsllqll —Fslql
phonon self term: { 2GS } = 7%, (1) WEE X S/q%;q” Wasq|sq” Gyrqr Gy
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+ 2 quS,q'|SHq" {Gsllqll +G$Iql
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Fig.2 Temperature dependence of the thermopower of silicon for
an n-type carrier concentration of 2.75 x 10" cm—3. The red circles
are measurements (sample 537, concentration 2.8 x 10'# cm3) by
Geballe and Hull™>.
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Fig. 4 Temperature dependence of the mobility of silicon for an
n-type carrier concentration of 2.75x 10" cm 3. The red circles
are measurements on various different samples with carrier
concentrations ranging from 3.5x 10'® to 1.4 x 10" cm—3%2,

102

¥ ¥
— 2.75x 10" cm~?, dragged full
- - 2.0x10" cm~?, dragged full
@ @ Inyushkin et. al.

50

100

150 200 250 300
temperature (K)

Fig. 6 Temperature dependence of the phonon thermal con-
ductivity of silicon for n-type carrier concentrations of 2.75 x 10'4
and 2 x 10" cm 3. The red circles are measurements on high purity
samples with natural isotopic mix>’.

Drag term plays important role in Seebeck coefficient, and less important role in mobility and phonon thermal
conductivity, especially at high temperatures.
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F18.00009 Uncovering interpretable low-dimensional geometric structures in gene expression
using curvature regularized variational autoencoders Jason Kim et al.

Meso-scale structure in Dimension reduction UMAP cluster close in UMAP
Dimension reduction in ML. doesn’t guarantee similar

UMAP with n_neighbors=250

PCA - linear model -> have meso-scale structure

t-SNE
UMAP - two popular nonlinear model
-> no meso-scale structure

[-VAE (this talk) - nonlinear model with
Curvature regularization
Normal VAE + curvature regularization

Kim, J. Z., Perrin-Gilbert, N., Narmanli, E., Klein, P., Myers, C. R., Cohen, |, ... &
Sethna, J. P. (2024). $\Gamma $-VAE: Curvature regularized variational autoencoders ‘ '
for uncovering emergent low dimensional geometric structure in high dimensional data. htips./fwww.kaggle.com/code/bextuychiev/beautiful-umap-t
arXiv preprint arXiv:2403.01078. utorial-on-100-dimensional-data
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F18.00009 Uncovering interpretable low-dimensional geometric structures in gene expression
using curvature regularized variational autoencoders Jason Kim et al.

Meso-scale structure (Long-range covariance)
uma I'-vae

pair dist: original

pair dist: original

P pair dist: re-embed
pair dist: re-embed
curvature regularization for the

Kim, J. Z., Perrin-Gilbert, N., Narmanli, E., Klein, P., Myers, C. R., Cohen, |, ... & manifold.

Sethna, J. P. (2024). $\Gamma $-VAE: Curvature regularized variational autoencoders
for uncovering emergent low dimensional geometric structure in high dimensional data.
arXiv preprint arXiv:2403.01078.




v Waey
F18.00009 Uncovering interpretable low-dimensional geometric structures in gene expression
using curvature regularized variational autoencoders Jason Kim et al.

A “global” embedding of all kinds of cells by gene expression

a I'-vae embedding: small curvature

A 3D map for the cells

muscle
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Uwe Bergmann

Toward Universal Force Field

N62.00006 Materials Discovery Using Simulations and Deep Learning

~48000 known stable structure => 2.2 million stable structure (based on convex hull)

Nequip model for
bulk solids with

all elements
c BagLi,;Se,,Si; T = 1,000 K
320 | ® Randomly initialized g
® GNoME fine-tuned
% GNoME zero-shot ®
= 160 A
= .
g 80 )
W st sovmnte e rm e st AT st et
S . * *e
g ®
®
O
L ®e
20 ° o
[ J
10
0 10 100 1,000

Training set size

We also use SiLU for the gated, equivariant nonlinearities®®, We embed
the chemical species using a 94-element one-hot encoding and use a
self-connection, as proposedinref. 30.For internal normalization, we

Pretrained on atomic relaxation data (>10”8 data
points). Works fine for molecular dynamics.
Pretrained model seems to be pretty reliable with
error similar to randomly initialized model trained
on ~1000 data points

A. Merchant et al., Nature 624, 80 (2023).
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Significantly augment materials data through ionic substitution and symmetry-aware partial substitutions.
— 10° Candidate materials (Large enough to observe the Emergence in materials science)

'Emergence .]
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/
,,,,, e
o — o ———
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A. Merchant et al., Nature 624, 80 (2023).
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GNoME : ; 89.0M (6.0M UIP EF
MACE d 3. ; 0.88 089 o 1.6M (145.9K UIP EFS
CHGNet ; 006 1.6M (145.9 uIP EFSM
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ALIGNN 84 | I : Bl 154 7K GNN E
MEGNet : ; 133.4K GNN =
CGCNN ! . 154.7K GNN E
CGCNN+P : : GNN E
Wrenformer X ; 154.7K Transformer E
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Dummy




S$56.00005 Using first principles computations to understand and search for new transparent

O

conducting materials Geoffroy Hautier
Hole Mobility in Cul
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AMSET approach & analysis

Polar optical phonons (POP)
Acoustic deformation potential (ADP)
lonized impurities (IMP)
Piezoelectric effects (PIE)

IBTE (Iterative Boltzmann Transport Equation)

104

106

Carrier concentration / cm

108

1020

+ lonized impurities (IMP) performs the best.

Modelling/deposition method

IBTE + IMP g9 = 6.50 (exp)
IBTE 300K

AMSET gy = 6.50 (exp)
Single crystal

Solid iodisation

Liquid iodisation
Vapour iodisation
Sputtering

Molecular beam epitaxy
Pulsed laser deposition
Inkjet printing
Spin coating

J. Willis et al., Chem. Mater.
35, 8995 (2023).




W1é.00001: Simulating structural phase transitions with simple models

Julia Dshemuchadse (Cornell University)

oscillating pair potential OPP

W) at cutoff =0

T glqbal
¢ = relative minimum
depth of minima =~1

K y
Lennard-Jones potential I LJGP

3
Y /| ¢ = depth of Gaussian gloval
P minimum

=~1

»| r, = position of Gaussian ¢,

Reference: PNAS2021 Vol. 118 No. 21 2024034118
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W18.00001: Simulating structural phase transitions with simple models

Julia Dshemuchadse (Cornell University)

cP54-K Si,, cl6-Si

Reference: PNAS2021 Vol. 118 No. 21 2024034118
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W18.00001: Simulating structural phase transitions with simple models

Julia Dshemuchadse (Cornell University)
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Reference: PNAS2021 Vol. 118 No. 21 2024034118




Thank you for your contributions!



